## Exercise 52

Suppose $f$ is continuous on $[1,5]$ and the only solutions of the equation $f(x)=6$ are $x=1$ and $x=4$. If $f(2)=8$, explain why $f(3)>6$.

## Solution

The fact that there are two solutions to $f(x)=6$ means that the function passes through $y=6$ twice - once at $x=1$ and once at $x=4$.


If the function is continuous on $[1,5]$ and the function is 8 when $x=2$, then look what happens if the function is less than 6 at $x=3$.


If $f(3)<6$, then there would be a third solution to the equation $f(x)=6$, indicated by the red dot. This would contradict the assumption that only $x=1$ and $x=4$ are solutions to $f(x)=6$. It's necessary, then, that $f(3)>6$ if $f(2)=8$.


